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The stresses at each point of an infinite anisotropic elastic medium with defects 

described effectively by dislocation pile-ups (the pile-ups themselves, cracks, 

deformation twins, fine crystals of martensitic type) are determined within the 

framework of the plane problem of the theory of elasticity. The stresses are ex- 
pressed in terms of the dislocation density in the pile-ups for an arbitrary reali- 
zation of the defects, taking into account their total Burgers vector. The inter- 
action between a source of the linear force-dislocation type and the mentioned 

defects (taking account of the image force) is investigated. An expression is presen- 
ted for the stress around pile-ups described discretely. 

A number of papers ( [l- 71, for example) is devoted to a theoretical study of 
the stress fields of defects of pile-up type. Attention is turned in some [4 - 71 

to the similarity between the type of stress and the dislocation distribution in the 

pile-up. Nevertheless, no general expression has been obtained for the stress field 
in an anisotropic elastic and even isotropic medium with pile-ups although there 

is a solution for a slit-like crack [l] (valid, however, only in particular cases). 
By using a simpler method than in [l], more exact results are obtained in this 

paper which are applicable to all defects of the plane dislocation pile-up type 

for an arbitrary realization of the defects. In contrast to the expressions in [1] 

which are valid only near the blocked ends of cracks with zero Burgers vector 
and do not accurately take account of the interaction with other defects, the expres- 
sions obtained yield the stress in a whole medium with defects of the pile-up type 
in external fields which can be described by linear combinations of rational-frac- 

tion functions. 
Let us note that the influence of anisotropy on the dislocation distribution and 

on the stress, not essential in a number of cases [1, 21, can play a major part in 

describing such processes as the excitation of defects by definite development 
systems in a field of others, the rotation and branching of cracks, the distribution 

of impurities and the separation of phases around defects, the formation of relax- 

ation zones around them, etc. 

1, The stress field at a point (z, y) near a dislocation parallel to Oz and intersecting 
the q-plane at the point (<, 0) is 

(1.1) 

Here the complex constants Qh.j (“) and p, (Im pv # o [S]) depend on the dislocation 
direction and its Burgers vector and the elastic properties of the medium (the method of 
their evaluation is elucidated in [l], in Chap. 13 of the book [8], and in the appendix). 

907 



908 v.A.SolcJv’elJ 

The dislocation distribution 61 (.L) in the pile-up on the section & iV .I A2 of the 
xti-plane is determined in terms of the external stresses by inverting the singular integ- 

(1.2) 

Here A is the constant of dislocation interaction with the Burgers vector b in a pile-up 
on a plane with normal n (in this case the vector n is directed along OIJJ. 

According to [9], the solution of (1.2) is 

1 
(1.3) 

In this expression R (I) is a rational fraction whose numerator is the product of those 
quantities x - A,,, (m = 1, 2), where A,,, are the free ends of the pile-up, and the pro- 

duct of those x - A,,, where A,, are the blocked ends, is in the denominator, and C 

is a constant which is not zero only for pile-ups blocked on two sides. The condition 
Aa 

s P (4) dE = iv (1.4) 
A1 

defining the constant C or the position of the end of the defect (N is the total number 
of dislocations in the de’fect) is satisfied in all cases. If both ends are free, compliance 
with the additional condition A% 

s 
c (0% _ 9 

AI ‘c/R(E) 
(1.5) 

predetermining the position of the ends of the defect, is required. The anisotropy enters 
only through the constant A in the expressions written down. 

If cohesive forces act at the ends of the defects or there is a plastic relaxation zone, 

they are often considered clamped, but occupying a position such that the coefficient 

in the root singularity would not exceed a given number (see the end of Sect. 3). 

It is easy to extend (1.2) - (1.4) etc. to the case when there are sections with zero 

dislocation density in the pile-ups [9] (1. e. to the case of several pile-ups in one plane). 
Then the integral in (1.2) and (1.3) must be replaced by a sum of s integrals over the 

sections [Ati, A,] (k = 1, 2, . . ., s) with non- 
zero functions p (x); furthermore, 

R = RI (x)R, (x) . . . R, b), 

where Rk (5) is determined for the k-th sec- 
tion as before ; C, + C,X + . . . + Cd_rta-r 
must be substituted in place of the constant C ; 
condition (1.4) is replaced by s conditions( 1.6), 
and conditions (1.5) by condition (1.7) 

Ak2 

s 
P (4) dE = N, (1.6) 

‘kl 

Fig. 1 0 09 dE = o dRo ) m=o, 1, ..‘I --P--1 (1.7) 

k=l A/o 
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(q is the difference between s and the number of free ends). 

The stress field around a pile-up is given by the integral 
Al 

Let us transform this formula by using analytic continuation of the function p (z) from 
the upper edge of [Al, AJ onto the whole complex plane 

P (6) = 4 [@ (f) - Q (019 a)(<) zz pg 
4 

(1.8) 

Here CD (5) is a function of the complex variable 5 which is analytic outside the slit 

[AI, AaJ in the case of integrability of p (5) and u (6) is the analytic continuation of 

o (j) which is meromorphic if only u (5) defined by (1.2) is a rational function, Since 

the values of Q, (C) at the edges of the slit satisfy the Sokhotskii-Plemelj relations, we 
have at points of continuity of p (5) 

p (5 + i0) = P (5) = - p (5 - to) 

Hence, the stresses can be written as the sum of contour integrals (the contour of inte- 
gration is shown in Fig. 1) 

crrj (z, y) = i $ Qg’ $I e 

V=l 

The integrand has just the following singularities outside the contour: a pole at the 
point c, = x + pi (which does not lie on [AI, AZ] because Im p, # 0), singularities 

of the functions u (5) and possibly a pole at infinity. Hence, the desired stress field 

around the pile-up is given by the expression 

Gkj(Z, Y)= i Q~‘i--nip(l+~“~)+~Res[ ,_z”,,?,]} (1.9) 
V==l (0) 

in which the second summation is taken over the singularities of u (c) and the infinitely 

distant point. 

The condition for the possibility of evaluating the residues of u (b) imposes a con- 
straint of the kind of admissible load. The presence of component of the stress at infi- 

nity results in a pole u (5) / 5 there and the appearance of the difference p (c,) - p (co) 

in the right side of (1.9). In the case of several pile-ups in one plane,(l. 9) remains 

valid, taking into account the modification of P (5) discussed earlier. 
Let us stress the need to select that branch of the function p (5) which is the continu- 

ation of P (x) from the upper edge of the slit LA,, &I. A number of expressions for P’ 
is determined by the function v(& - ZJ(t; -xi the needed branch of this function 
tends to -i< at infinity. 

Let us present expressions for p and uk j in the cases encountered most often. We have 

for a pile-up of N dislocations clamped at the points Al and A2 in the field (JO - oz 

P (2) = 
SN + 40,, (22 - A1 - As) - a [SG~ - 42 (Al + AZ) - (AZ - Ai)V 

8n v(Aa - I) (z - Al) 
(1.10) 

skj (x, y) = 5 Q$$ {-- flip (6,) + 00 - a6,) 
v=1 
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By imposing the condition of boundedness of p (x) at the free ends and the condition 

(1.5), we obtain formulas from these expressions, for a pile-updrawn into a detainer at 
A, (a = 0, A, - A1 = 2N / (To) 

(1.11) 

6 

Qkj fs, Y) = t: Qg i- P (5,) + 00) 
v=1 

as well as for a free pile-up in a quadratic potential well (a0 = 0, A, = - Af = A = 

-fC/2Nla) p (x) = _$ I/da, crlrj (2, y) = i Q$) (- ia j/-m - a&,) (l* 12) 
v=1 

Some other examples are discussed in Sect. 3. 

The expression (1.9) is applicable for arbitrary dislocation pile-ups, particularly twin- 

ning [lo] or transformation dislocations [ll, 121, and therefore, they determine the stresses 
around fine twins or martensitic crystallites (it is essential only that the crystallite be 

sufficiently fine and the difference between the elastic deformation of the crystallite 
and the matrix could be neglected in the stress field originating as compared with the 

intrinsic ~ansformation deformation ; only the elastic moduli of the matrix hence enter 
into the considerations). 

2, A slit-like crack (extended along 0s) is described [Z, S] by a system of three 
families of dislocations : (1) edge (cleavage) dislocation with Burgers vector perpendi- 

cular to the plane of the crack (it is convenient to select it as. the unit b@) = n); (2) 
screw shear (with Burgers vector parallel to the front of the crack bisl = T) , and (3) edge 

shear (Burgers vector in the plane of the crack and perpendicular to the front b(l) = m). 

In this case 

eki (2, Y) = 5 i Q$' {- nip@) (6,) + 2 Res [S]} (2.1) 
a=1-1 (0) 

(the summation over u is over the three families of crack dislocations). 

The dislocation densities p to) (z) in the generally different sections fAi(K)t Attat] are 

given by the solution of the following system 

where 

A(@ = $j Qf$"'+(= 
(2.3) 

z(“) = e&$) (2.4) 

The location of the ends of the intervals is found from conditions (1.4) and (1.5) for 
each of the dislocation families. The pile-ups of shear dislocations can emerge beyond 
the limits of the cleavage pile-ups, then they become pile-ups of real dislocations. It 
is assumed in (2.2) that these pile-ups lie in the plane of the crack. The matrix A@’ 
is non-singular and has the inverse (A- ) 1 (@). Hence,in the case of clamped ends 
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Qa) = Af, A9ta) = As the solution (2.2) has the form 

p(a) (=) = - f 
1 

v(A% _ I) (z _ Al) x (2.5) 

(a = 1, 2, 3; Cta) are determined from the three conditions (1.4)). 

In this case Cta)=O (which corresponds to a zero Burger vector for the crack) and 

the expressions written down are analogous to formulas (102) and (103) in [l] when only 
the first member on the right side of (2.1) is taken into account. 

3, Let us examine the important problem of the interaction between a pile-up and 
a linear source (which is simultaneously a dislocation and a linear force). The stress 
field of a source passing through (z,,, I/J is 

(3.1) 

Here 5s” = z. + PJJO. The specific expression for Uk$“) is given by (A. 8) of the 

appendix obtained in [13, 141. 

The dislocation density in the pile-up with clamped ends (-A, 0), (A, 0) is determ- 

ined by the expression 

p(r)= v& 
{ 

C- 

Integration is along the contour C, 
and we obtain by using (1.4) 

P (5) = 
NA + AM 

_ 
nA VA%- 22 

0, = U$hkbj, 

Cl 
shown in Fig. 2. The integrals are easily evaluated 

+ & “%I (5 

WI/W 

1,) 1/A& (3.2) 
OV 

Al2 = (3.3) 
V==l 

In this case, according to (1.9) the stress field of the pile-up is 
(3.4) 

"kj (5, Y)= i Qiy'{ - 
i (N/l + A2) 

-+ 
P=l A 1/A2 - 5; 

Fig. 2 

gl A(1-; ) 
0” t* 

[I - $$$I} 
The expressions (3.2) and (3.4) extend the re- 

sults in [IS], in which the interaction between a 
crack blocked at two sides for N, = o and a dis- 
location is examined. 

The following singularities in the stress (3.4) 
are seen: 1’. At large distances from the pile-up 



912 L:.~.Soiov ‘cl. 

the field behaves as the field of a N-tuple dislocation. 2”. The field near the ends of 
the pile-up in the case of a source near the pile-up is the field of a pile-up JV’ -I- r112,it 
dislocations. 3*, The dislocation experiences the effect of the image forces on the pile- 
ups determined by the second term in (3.4) as s + ,x,,, y --+ y,. For example, the 
image field is 

(3.5) 

for I p,yo 1 ~min{(A2-~,2)1(~~o), f/A” 
It has been taken into account here that the signs of the root with lm pVY > 0 and 

< 0 are opposite,hence, all values of p, with an imaginary part of opposite sign to pP 

yield a contribution to the image. 4”. Non-zero stress components experience a jump 
as they pass from one side of the pile-up over to the other. 

By using the method elucidated, expressions are easily obtained for other pile-up reali- 

zations also. For example, the dislocation density in a pile-up with free ends in a quad- 

ratic potential well in the presence of a linear source when 

6 

~(5)==---crz+ 2 

v=1 OV 

, 

is given by the expression 

P(s)=d(Ar--)(rc-A1) {++V$1n4(Z_c 
OV 
) f,;:_, ,(< -Al) } 

ov ov 

The location of the ends of the pile-up is found from (1.4) and (1.5) as 

a (Aa - Al)% 
8 

-i {+[l+i 2V(A;z;;;L-;A1) ])=N 

V-1 ov ov 

(At - A+ 
-i 

io, 

2 
v=1 A ~/AZ - Co,) K,,v - 4 =' 

According to (1.9) the stress field of the pile-up is 

bkj = i Qtju If, - i v(*e - L) (L - Al)] i- __L$ .t (ziQ!: ) x 
Y 

v=1 

1 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

The special value of the expressions for the stresses near defects with free ends is that 
they are actually Green’s functions for a number of important problems about the kind 
and stresses of defects of pile-up type. In fact,(3.6) and (3.9) depend linearly on the 
external field, hence, in the presence of distributed fields which can be represented as 
the superposition of sources, the effect of a field is the superposition of the effects of 
the sources. Therefore, for the pile-up in a field 

(3.10) 

(a”) (x) is a rational fraction, and 8 is the distribution domain of sources with density 
0”) we have 
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(3.11) 

’ Qg 
okj= og+ 2 - @pb* YO) 

A ss 
n COP -L 

1 _ 1/t& - 5,) (6, - Ai) 

p,v=1 -r/CA, -- co,, (co,+ - Al) dzodyo 1 (3’ 12) 

Here at! is determined by means of a(‘) according to (I. 9). and the location of the 

ends A, and A2 is determined, as before, from conditions (1.4) and (1.5). 
The expressions written down provide the possibility of investigating the fields around 

cracks and other defects taking into account the cohesive forces of the edges.the non- 

linearity of the medium, and the presence of the relaxation zone, By connecting the 

cohesive force to the thickness of the defect, the nonlinearity to the magnitude of the 

stress, and being given definite models of the plastic zone, nonlinear equations describing 
the system exactly (within the framework of elasticity theory) can be written by using 

(3.11) and (3.12). However, this is beyond the scope of this paper. Let us note that know- 

ledge of just certain integral characteristics discussed later is needed for the estimates. 

Let us also note that in some cases o, (2, p) can be found from experiment. 
The listed effects are often observed near the ends of defects in a sufficiently small 

domain. For example, let us consider p and Oar near the end A, under the assumption 

A, - AI > I 5, - AI I > I Co, - 4 I 

(3.13) 

6 

(3.14) 

The density and stress singularities near the end are the same as for a clamped defect, 

however, the coefficients of these singularities equal certain fixed values expressed in 
terms of M. 

Since the crack is described by three systems of dislocations, three coefficients must 
be introduced for it 

M(O) = i ; (A-+“a) 8 ;;‘“-~; dzodyo 

“==I OV 

in three formulas of the type (3.13) for p (@, but the stresses are given by the formula 

Knowledge just of Umjnj in this plane is needed to determine the work of crack pro- 
pagation in its plane, hence, only the (I,,_ (5, 0) with the especially simple form 

a,2(x, o)=K,l I/AI--~ 
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Km = - i zl zl # b~T”~;:‘“’ dxodqo 
WV 

is ordinarily of interest. 
The quantities Km in which the anisotropy does not enter formally are called the ef- 

fective stress intensity coefficients. The constants M( ‘) defined as follows in terms of 

the Km 
M(a) = i J_ (.&I)W@K, 

p=1 z 

are more convenient for the description of the stress rosettes. 

4, The sum of (1.9) or (3.12) over the defects can be used to find the fields of seve- 
ral pile-ups (parallel to oz as before, but with different development planes and dislo- 
cations). Therefore, it is simple to find the stresses if the dislocation density in the de- 

fects can be found. Expressions for a system of defects between which the spacing is 

much greater than their size can be written down in a particularly simple form. In this 
case, the effect of adjacent pile-ups on that given can be replaced in a first approxima- 
tion by the effect.of concentrated Nk-tuple dislocations, and the dipole and other mo- 

ments of the defects can be taken into account in the next approximations. 

6, In the case of a discrete description of the pile-ups, it also turns out to be possible 
to write an expression for the stress analyticallv. Ideed, if construction of the polynomial 

f (2, t) = h (z- 2, (Q) (5.1) 
n-1 

whose roots 5, (t) yield the location of the dislocations, is possible, we will have at the 

time t 
.1X $5 

x=* x 

(the prime denotes the derivative with respect to x). Hence for a pile-up 

(5.2) 

The appropriate polynomials have been found for a number of characteristic stress 

fields by using the Eshelby, Frank and Nabarro method in both the cases of equilibrium 
[16, 171 pile-ups and those moving at subsonic velocities [18 - 201. In both cases (5.2) 

yields an expression for the stress. 

Appendix. Some formulas from six-dimensional theory. Let us 
present the notation and some results from six-dimensional theory [l, 13, 141 for dislo- 

cations-linear forces (linear sources). 
Let us introduce the following notation for a 3 x 3 matrix: 

(~7 b)jk = alcljitmbm (A. 1: 

Here Cljkm = Cjlk,,, = ck,,,lj is the elastic modulus matrix, a, b are vectors selected 
from the right-hand triple of directions {m, n, T} connected with the source as follows 
(compare Sect. 3) : n is one of the normals to the source (normal to the pile-up in this 

case), T is parallel to the source, and m is the second normal to the source. 
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The stress and displacement fields around linear sources are defined in terms of the 
eigenvectors and eigenvalues of the following eigenvalue problem in six-dimensional 
space (over the complex number field) : 

(N - p,l)Q”) = 0 (A. 2) 

where I is the unit operator and N is formed as follows from the matrix (A. 1): 

(A. 3) 

Hence, the eigenvalues pv are solutions of an algebraic equation of sixth degree 

Det (N - pf) = 0 (A. 41 

and in the absence of degeneration the eigenvectors e(“) are proportional to 

p = 
C(“) {Adi (N - Pl)}jl 

3 WP) Det IN - PO I P=P, 
(A. 5) 

Here {AdjN},k are cofactors of the element Njk of the matrix hr and C(‘1 are ar- 

bitrary multipliers. 
If the first three terms of ~(“1 correspond to the complex three-dimensional vector 

A(‘) and the rest to the vector L(‘f such that 

(A. 6) 

and the constants C(“f are determined from the normalization condition 

A(Y) L(P) + AtPI L(“) = 6 
P” (A. 7) 

then we have 6 

Ckj (x0 $1 =y 2 
sign (Im p,) ck&c) (Lfv)b, + Ap’lif (n$ + rvnt 1 

2ni {m (r - ra) + p”?r” (r - ro)) 
V==l 

(A. 8) 

making (1. 1) and (3.1) specific, for the stresses at a point c due to the source (which 
is a dislocation with Burgers vector b and simultaneously a linear force of intensity f) 
passing through the point rO. 

Recalling (2.3) for A\@), we have 
6 

where B,, is a non-singular matrix of the coefficients before the logarithms in the ex- 

pressions for the energy of a unit dislocation. Hence, because the b@) are not coplanar, 
the matrix A(@) is also non-singular, 

The author is grateful to V. L. Indenbom, M. A. Solov’ev, D, E. Temkin and A. G. Kha- 

chaturian for discussing the research, 
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